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Abstract, Dynamical systems in SL(Z, R) or SL(2, C) naturally appear in the transfer matrix
method for quasiperiodic chains characterized by arbitrary irrational numbers, We show new sub-
dynamical systemns and invariants that are related to full diagonal and off-diagonal components of
the transfer matrices; they are analogous to formulag of Chebyshev polynomials of the first and
second kinds. Applying them to an electronic problem on the Fibonacci chain, we obtain sets of
self-similar polynomials, quasiperiodic extension of the Chebyshev polynomials of the first and
second kinds with self-similar properties. Two scaling factors of the self-similarities coincide with
ones obtained by the perturbative decimation renormalization group method,

1. Introduction
A dynamical system in SL(2, R) or SL(2, C) defined by
Myyq = My_1M} , ' (1.1)

called ‘the Fibonacci sequence in a Lie group’ appears in the transfer matrix study of the
quasiperiodic Fibonacci chain model [1,2]. A key feature of (1.1) is the existence of a sub-
dynamical system and an invariant for F, = tr My,

Frop= Fpa Py — Fpep o (1.2)
and
[=F2 + F+ FLy — FeaFeFeoy — 2. - (1.3)

This sub-dynamical system is called the ‘trace map’, which is enough for spectrum study
of physical problems (electronic, magnetic, phonon) and makes clear a singular, continuous-
spectrum Cantor set with Lebesgue measure zero {1, 3-5]. It is known that eigenfunciions are
critical according to the singular continuous spectrum [6].

In this paper, we first clarify why the above invariants and others of the same type can exist.
Second, we present new complementary sub-dynamical systems and new invariants of (1.1)
associated not only with traces, but also with full diagonal and off-diagonal components of the
matrices [7], which-directly relate to how the components of the mairices grow, namely the
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behaviour of critical wavefunctions on electronic problems [8]. Moreover, third, we construct
new sets of ‘seif-similar polynomials’ [9] using the new sub-dynamical systems.

To obtain a deeper understanding of the trace map, Dotera has developed the theory of
‘self-similar polynomials’ through the observation that a transfer-type tight-binding model on
the Fibonacci chain plays a key role for the dynamics. As a result, an important self-similar
behaviour of the polynomials has been found. It has been argued that the polynomials are
powerful tools to elucidate the structure of the energy spectrum of any types of models on the
chain [10].

In the theory, F;'s are polynomials of x = tr My and are considered as ‘quasiperiodic
extensions” of the Chebyshev polynomials of the first kind possessing self-similar behaviour
with two scaling factors. In this paper we present new sets of self-similar polynomials Gg’s
and H;’s for our new sub-dynamical systems as quasiperiodic extensions of the Chebyshev
polynomials of the second kind.

These self-similar polynomials have one parameter r representing the strength of
quasiperiodicity. Properties of these self.similar polynomials are the following. (i) The
order of these polynomials are Fibonacci numbers. (ii) When r = 1 (the periodic case),
they coincide with the Chebyshev polynomials of the first and second kinds. (iii) When
Ir| « 1 (a strong quasiperiodic region), they exhibit self-similarities with two scaling factors;
‘seed polynomials’ (k = 1, 2, 3) appear self-similarly. (iv) They have invariants which are
independent of x. (v} The seed polynomials can be generated from their approximate forms.

In terms of these self-similar polynomials, we uncover a remarkable hidden self-similar
characteristic of the dynamical system (1.1), since the two scaling factors in the self-similarities
are nothing but those obtained by a decimation RG method [11], which has been considered as
a different approach to the trace-map method.

The paper is organized as follows. In section 2, we begin to study generic quasipertodic
chains constructed by the projection method [12] associated with arbitrary irrational numbers.
(The Fibonacci chain corresponds to a typical quadratic irrational called the golden mean.)
It is easy to see the relation between self-similarity of the structure of chains and quadratic
irrationality.

In section 3, we introduce the transfer matrix method for the chains which provides generic
dynamical systems [13], i.e. generalization of (1.1). We investigate full components of the
matrices and obtain new sub-dynamical systems governed by the orbit of the trace map and
new invariants. The new maps and invariants are described in terms of analogous formulae
of the Chebyshev polynomials. Using the knowledge of section 2, we demonstrate that the
invariants of maps exist for quasiperiodic chains with any arbitrary irrationals because of a
theorem of the ‘free group of rank 2°.

In section 4, we restrict our attention to the dynamical system for the Fibonacei chain
and construct sets of self-similar polynomials. Maps, invariants and relations are explicitly
computed in detail. The conclusion is given in section 5. Inappendix A, an outline of derivation
of the new maps and invariants is given, and in appendix B, the self-similar polynomials up to
the sixth Fibonacci generation are shown.

2. Quasiperiodic chains associated with arbitrary frrationals

We can obtain a quasiperiodic lattice by projecting lattice points contained in a subset of
a higher-dimensional space into a lower-dimensional subspace. This method is called the
projection method and the subset is called a “window’ [12]. Using a projection method with
the ‘window” {{xy, x2) € B?| ax; < x5 € @x,+e-+1}, wheree > Qis an irrational number,
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and regarding the long (short) tile as A and the short (long) one as B when o < {>)1, we
define a quasiperiodic chain (sequence) R(x) consisting of two elements A and B. Let g,/ py
be a rational approximant of « given by

1 1 1
qk=n0+——l+—|+ + | (2.0
Pr Hy |ﬂ2 |nk—1
where
g-1=0 go=1 Jeel = MeGe + -1 k20 (2.2}
p-1=1 po=0 Pes1 =P+ pr-1 k2 0. (2.3)

We infroduce a Nielsen transformation of 75 (the free group of rank 2 generated by A and
BY[14], xn : R x o = Fo % Fa:

X (X, Y) = (XY, X) ’ 24
and define a finite sequence Ry by

(Ro, R_1) = (B, A) (Rit1, R} = Xuo(Ri, Rem1) Le. Ry = RPARe k2 0.

(2.5)
It holds that, for &k = 2 _ )
a6 4 pe ot A Alo T A d P —_—
— R@),, = {B PABUA.. B-lA = AMBATE. . ATBA  ifkisodd (g
BYWAB¥A... B 1AB = ABAY B ... A%~ R if k is even
and
Ri—>R@) as  k—oo : @mn
where ‘
oy =[(+1e]-[le] - and a = [{I + /o] - [ /e] {2.8)
and R{c)l,, denotes the first s elements of R(x) with s, = pp + g [15, 16].
It also holds that generators of the group of automorphisms of 7
g A~ B and B A (2.9)
o2: A= BA and B— B 2.10)
o3  Arr A and B> B! (2.11)

induce actions by generators of GL(2, Z)

R(@)+ R (é) R ((‘1) (1)) -o:) = R(p1 - ) 2.12)

Ry R+ 1) = (( ) o 02 - ) 7 (2.13)

R(@) > R(—a) =R (( ) cz) =R(ps-a) | (2.14)
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respectively, with some natural extension of the definition of R (). These generators generate
generic ‘hyperinflation transformations, generalizations of those obtained in [17].

Let us mention the relation between quadratic irrationality of o and self-similarity of R{c).
Hereafter we assume 0 < & < 1 {ng = 0} by virtue of the symmetry (2.12). Since a quadratic
irrational is a fixed point of a certain GL(2, Z) transformation, the corresponding chain is
invariant under a certain hyperinflation transformation, meaning that the chain is self-similar.
If we define a free substitution (an antomorphism) {14]

@ = 0107" dp:Ar> A"B and Br> A (2.15)
we get
Rp=¢n 0¢n 0 0@ (4)
=y Oy 0+ O Py © P (B) (2.16)

R.l’+l = ¢n|_ o] ¢nz Qe--0 ¢H};_1 ¢ ¢nk(A)

which means that Ry and Ry, are obtained by transforming B and A by the same automorphism
(notice the order of operating). Thus it is clear that, if & has a periodic continued fraction
expansion, R(e) can be obtained from A (or B) by an infinite succession of a certain free
substitution (substitution rule) and have self-similarity. (The continrued fraction expansion of
an irrational number is periodic if and only if it is quadratic irrational.) In particular, if ny = n,
i.e. independent of %, the chains are the Fibonacci (golden) and the precious (silver, etc) mean
chains [18]. They are obtained by an infinite succession of ¢, and are the ‘fixed points’ of the
substitution ¢, i.e. have self-similar properties.

3. The dynamical systems and their sub-dynamical systems
Many physical problems on the chain R(w) can be reduced to the transfer matrix method.
From (2.5), the matrix M, satisfies )

My = My M G.n

which defines a dynamical system in SL(2, IR) or SL(2, C). Traces of the matrices were well
studied by several authors {1-5, 13, 18, 19]. However, our purpose here is to investigate other
components of the matrices, which provide new sub-dynamical systerns and invariants of (3.1).
Let us define the following quantities using an arbitrary P € M (2, C) withtr P = 0:
F, =1t M, Gy =t (PM) = tr(PMk_zM;:’ Hy=tr (Mk_sznf_'i').
(3.2)

Inorder to see the relations of £y, G and Hy, we also write down the equations of F, throughout
the paper. Then, we obtain formulae

FreaSn, (Fi) + Feo18n (Fler1) = Fierr FioSiy (Frg1)Sp, (Fi)

- Fk-l-lsnk.,.] (Fk-!-l)Snk—-l(Fk) - FkSnk(Fk)SnH_:—] (F.‘L"H) (3'3)
G2 Sn (Fi) = Gra1 Sy (Frw1) = Fea1 GuSpeys (Frg 1), (Fi)
+ Grt1 Snps P 1) Snymt (Fr) — G S (Fr) Sy -1 (Fra1) 34)

Hie 280, (Fr) + Grmy Sppyy (Fr1) = Gt FiSpy (Fig1 ) S (Fr)
— Grp1Sny (P 1) S -1 (Fi) = GiSn (F) Sy =1 (Frt) (3.3)
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where $,(x) is the monic Chebyshev polynomial of the second kind defined by

Solx) =0 Si(x)=1 Snt1(x} = x5 (x) — Sp—1(x)

sinnf
or Se(2cosf) = b (3.6}
and C,(x) is the monic Chebyshev polynomial of the first kind defined by
Colx) =2 Cilx) =x Crp1(x) = XCy(x) — Coi (%)
or Cp(2cosB) = 2cosnf. 3.7
It is immediately shown that
MMy My ML = (M MM MDY ™ = (oMo MG e (3.8)

and therefore there exist invariants (i.e. quantities independent of &)
I =te(Mp_ s MM MY

=2+ gtr ((Mi_1, Mi1-?) = 2 — det[My—1, Mi]- = det{M_, Mely — 2 (3.9)
T = (= 1) (P Moo MM MY (3.10)
where [M. N]e = MN + NM, satisfying

Sn (PRI +2) = F2 + FESu (Fe)? + Fiy ~ Frgt FeFoo1Sn,(F) + 2Fryy Fim Snm1 (Fi)
=F2, + FESu (R + FL | — B Feo1Cu(F) 3.11)
Su(F) (= DFT = Fi1Grpr — FrGiSp (Fi)* + Fi1Giy
— Fisr FeGo1 Suy (F) + (Fe1Gims + G Fem) oyt ()
= — Fe1Hiyt = FiGiSp (F)* + Fi1Gr
+ Fig1 G Fr1Sp, (Fi) — (Fes1G 1 — Gyt Fi—1) S -1 (Fi) . (3.12)

(An outline of derivation of these formulae is given in appendix A.) These formulae provide
sub-dynamical systems and invariants of (3.1).
To see this explicitly, we set

p@ _ ((1) _01) p® _ (‘1’ 8) PO (g (1)) CRE)

Then we obtain that fo), G;(cb), and fo) satisfy these formulae (with obvious notations) and
M), can be described in the form :

(Fe+ G /2 G )
M, = (3.14
% ( G:(f] (F, — Gf)) /2 )

which implies that our sub-dynamical systems completely determine the original system.
Moreover, we know how the components of the matrix grow from (3.4) [8]. Since the sub-
dynamical system (3.4) is linear about Gy, the orbits of matrices are governed by the orbit
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of their traces. It is clear that we can obtain four independent invariants of (3.1) and that in
generic cases P can be expanded by P@, p®) and P,

The very existence of the invariants is due to the relations (2.16) and (3.8). The dynamical
system (3.1) defines a representation of 7 in SL(2, R) or SL(2, C), corresponding A to M;
and B to My, in general Ry to M. As mentioned in section 2, Ry and Ry are obtained
from A and B by the same automorphism, and there exists a theorem of group theory that the
commutator of generators 73 is transformed as

ABAT'B™' > X(ABAT'B HyE X! (3.15)

(X is an element of J3) by an automorphism [14]. Therefore the commutator of M and My
must satisfy the same relation as (3.15), which is (3.8). It is plausible that we cannot obtain
such invariants as I or J for quasiperiodic chain obtained by non-free substitution rules (not
automorphisms) {20, 21]. No analogue of this theorem exists for any F;, (m = 3), hence it is
also plausible that we cannot obtain such invariants for m tiling chains (m > 3).

Formulae (3.3)-(3.12) can be regarded as quasiperiodic analogues of those of the
Chebyshev polynomials of the first and the second kinds. In fact, if M; = My, ie. My = M}
(the chain is periodic), then we find F;.’s an G;’s are the Chebyshev polynomials of x = tr M,
and I =-2, J = (0. Since the maps defined by the Chebyshev polynomials have ergodic
properties (bounded in a region), we can understand that a periodic system has an absolutely
continuous spectrum in the view of the dynamical system [22]. In contrast, quasiperiodic
systems have singular continuous spectra in general, a scenario which has been recognized in
terms of escaping in the trace map (3.3) and the invariant (3.11) [3, 13, 19].

Before closing this section, we retuzn to the Fibonacei chain, n; = 1 (o becomes the inverse
of the golden mean (0.618. . .), a typical quadratic irrational number). In this case, the chain
is self-similar and obtained by a substitution rule. The dynamical system (3.1) becomes (1.1},
which is thought to be a renormalization group equation by virtue of the self-similarity of the
chain [1, 2,23]. The sub-dynamical systems and the invariants in this case become

Froo=Fnfy— Fa (3.16)
Gryz = Fis1Gp + G (3.17)
Hiya = G Fr — G- (3.18)
and
I=F2 + FE+ F2 | — Bt FeFyey =2 (3.19)
J = (=¥ Fi41Grs1 =BGy + Fee1Grot = Fit FrGrr)
= (D)X~ Fip1Hip1 — FiGr + Feo1Gemt + FennGiFer) (3.20)

4. Sets of self-similar polynomials

In the rest of the paper, we concentrate on the dynamical system (1.1) for the Fibonacei chain
and present new sets of self-similar polynomials G;(x)’s and H;(x}’s corresponding to the
Chebyshev polynomials of the second kind concerning (3.17) and (3.18).
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In the transfer-type tight-binding model on the Fibonacci chain [9], we have

_{x -1 _fx =lr\{rx —=r\_{rx*-=1/r —rx
M'_(I 0)_ Mz_(l 0 )(I O>_( rx —r) @
where r = 14/t is the ratio of the transfer energies and we set x = E /14 (E is the energy
value).

In order to construct self-similar polynomials G;(x)’s and H,(x)’s, we must make a
suitable choice of P. If we make a correct choice of

_ 2
P =M, ( o 2’1") M1 4.2)

then we have seed polynomials (k = 1, 2, 3)

AW =x FBE=rlt-r=1/r B =rd—@r+1/rx 4.3)
Gix) =@ —1Dx G =rattr—1/r  Gs(x) = @r—rad+(-2+ 1/r)x

4.4)
Hy(x) =x Hy(x) = 2r = x>+ 1/r—r Hi(xy=rx®—x/r. 4.5)

The following properties of the polynomials Gi{x)"s and Hi(x)’s are obtained.
(a) When r = 1 (the periodic case), Gir(x)’s and Hp(x)’s coincide with the Chebyshev
polynomials of the second kind, i.c.

Fx)=Co(x) . Grplx) = H(x) = xS55(x) (4.6

where f; is the Fibonacci number (f = fi = 1, fis1 = fr + frm1)>-

(b) When |r| < 1 (a strong quasiperiodic region), G (x)’s and H;(x)’s exhibit self-similar
behaviour, as the Fi.{x)’s.

{(c) J is independent of x, i.e. independent of the energy value; we obtain

I=r*+1/r? J=rr-1r. @.7)

(d) Seed polynomials can be generated from their approximate forms.

Many choices of P lead to (a)~(c) but not (d), as is plausible from our studies. :

Now we will compute (b) and (d) (see appendix B). We find self-similar properties in two
ways: 3-cycles and 2-cycles.

(A) 3-cycles, for |x| < |r| < 1; self-similarities with a scaling factor 1/r2 exist:

Fy(x) = Fi(x/r%) Fs(x) > —R&x/r)  Fo(x) = ~F(x/r?)
Ga(x} = —G\(x/r?) Gs(x) = Ga(x/r?) - Geln) = Gs(x/r) (4.8)
Hy(x) =~ —Hy(x/r%) Hs(x) o Ha(x/r%) He(x) =~ Hs(x/r%) .

Moreover, if we employ the approximate seed functions

Fiin) =x Bxy=-r—1/r Fy(x) = —x/r

Gi(x) = —=x Colxy=r—1/r Gs(x) =x/r 4.9)

Hy(x) =x Hx)=1/r—r Hy(x) = —x/r
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which satisfy / = r2 + 1/r2 and J = r? — 1/r2, then from (3.16)—(3.18) we obtain the exact
relations

Fylx) = Fi(x/r%) Fs(x) = —Fa(x/7%) Fex) = =R(x/r)
Gu(x) = —G1(x/r?)  Gs(x) = Ga(x/r%) Gsx) =Ga(x/rh (4.10)
Hy(xy = —Hi(x/r%) Hs(x) = Halx/r?) By(x) = Hs(x/rY).

(B) 2-cycles, for |x| < |r| < 1; other self-similarities with a scaling factor 2/r exist:

Fi(x £ Ry ~ Fi(2x/r) Fa(x £ R) ~ £F(2x/r) Ps(x + R) ~ +F(2x/7)
Ga(x £ R)~ G1(2x/r)  Galx £ R) = £G,(2x/r)  Gs(x % R) ~ +G3(2x/r)

Hs(x &= R) ~ Hi(2x/r) Ha(x = R) & £Hy(2x/r) Hs(x £ R) o~ £ H:(2x/r)
(4.11)

where R = r + 1/r. Furthermore, if we use the approximate seed functions in the vicinity of
+R

Fi(x)=%(r+1/7) Fo(x) = +2x Fy(x) = 2x/r
Gi(x) =x(r —1/r) Ga(x) = +2x Ga(x) = @r —2/r)x 4.12)
H(x) =x(+1/r) Hy(x) = ¥2x Hy(x) =2x/r

which satisfy § = r2 + 1/r? and J = #% — 1/r2, then we obtain the exact relations

Bm=FRex/m)  R®==Rex/r)  FE) =B/
Gs(x)=Gi2x/r)  Ga(x) =£G2Qx/r)  Gs(x) = £Ga(2x/r) 4.13)
By = Hi(2x/r)  Hux)=HQx/r)  Bs(x) = £HQx/r).

These mean that not only (b) but also (d) is fulfilled.

These self-similarities for F(x)’'s and G(x)’s are illustrated in figure 1. Seed functions
are shown in (a) and (d). Global structures appear again for three cycles in (b) and (e), and
for 2-cycles in (c) and (). The energy value x is scaled by two scale factors, which coincide
with the ones obtained by the perturbative decimation renormalization group method [11].
Although new G (x)’s and H(x)’s are not directly related to the decimation transformation, it
is important that the scaling factors are recovered due to the specific choice of P (the meaning
of the choice of P is still to be determined, though).

The two-way self-similarity is well described by the schema of the ‘Fibonaccli tree’ [9, 10].
The Fibonacci chain is obviously self-similar in the sense of the inflation rule; however, the
the property is more subtle, a fusion of two-way self-similarity. According to (b) or (d),
self-similar polynomials are akin to fixed points of the maps (3.16)-(3.18), in other words,
*fixed-point functions’ under scale transformations in the case of the strong quasiperiodicity.
Weak quasiperiodic case where r 2 1 has been investigated in [10].
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Figure 1, Self-similar polynomials with r = % Global structares appear again in self-similar
manners. (a4} Seed functions, F1(x), Fa(x), F5(x). (b) Magnification 100x in the x direction
of Fy(x), —Fs(x), —Fs(x). (¢) Magnification 20 in the x direction of F3(x + R), Fi(x + R},
Fi{x + R). (d) Seed functions, G; (x), Gz(x), Gs(x). {e) Magnification 100 in the x direction
of —G4(x), Gs(x), Gg(x). (f) Magnification 20 in the x direction of G3(x -+ R), Galx + R),
Gs(x 4+ R).
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5. Conclusion

In this paper, we investigated dynamical systems associated with quasiperiodic chains and
found new sub-dynamical systems and invariants. A key feature we pointed out was that
they were analogous to formulae of the Chebyshev polynomials of the first and second kinds.
Our new dynamical systems directly represent how the components of the matrices grow.
Moreover, we presented sets of self-similar polynomials associated with the Fibonacei chain
and illustrated two kinds of self-similarity for the chain. By means of 2 parameter r representing
the strength of quasiperiodicity, these polynomials were quite a natural quasiperiodic extension
of the Chebyshev polynomials of the first and the second kinds.

There exists a difference between the sets of the polynomials regarding inner product
properties. Fp(x)’s are not mutually orthogonal with respect to their zeros {the Chebyshev
polynomials of the first kind are orthogonal); however, their inner products can be exactly
represented by r and the Fibonacci and modified Fibonacci numbers as explored by Dotera [9].
Gr(x)’s and Hp(x)'s were not studied for this property, since the Chebyshev polynomials of
the second kind do not have the property.

Quasiperiodic chains are models of quasicrystals [24] and have many attractive aspects
from not only physical but also mathematical points of view. The issue of the dynamical system
through the transfer matrix method for the quasiperiodic chain is one of them. The transfer
matrix method gives a simple mathematical form, whereas the decimation renormalization
group method [11,25] gives a simple physical picture; both theories give consistent results
without a clear relation between them. Apparently the self-similar polynomials provide a
substantial understanding of the relation and are an analytic realization of the self-similarity
of the Fibonacci chain.
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Appendix A

An outline of derivation of formulae (3.3)-(3.5) and (3.11), (3.12) is given.

Let M Ne SLC,R)or SL2, Clhx=tuM.x=tw(PM),y=tuNwithP e M2,C)
satisfying tr P = (. Then, we have the following:
M' = S, (xIM — 5,1 (x)E and M™ = —8,00)M + S 1 (X)E (a.1)
M+M1=xE and N+N1=yE (A.2)

where E is the unit matrix. Using (A.2), we have

rM=twrM™") and tr(PM) =—tr(PM™Y) (A.3)
r(MNY=xy —tr(MN- D) =xy —tr (NM™1) (A4)
tt (PMN) =Xy —tr (PMN" D) =Fy +tw(PNM™). (A.5)
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From (3.1), we have My = MM, My = My M ™. Thus, using (A.1) we obtain

Misz = Snppy (FosYMeMiss = Suyyo-1(Foe ) M (A.6)
My ==y (F)Mps1 My + Sner1 (Fi) My (A7)
P Mtz = Sppps (Frat) PMeMiar = Spyyy -1 (Frg 1) P My (A.8)
PMyoy = =S, (F) P My My + Sp1 (F) P My (A.9)
PM| = S, (F)PM ML — S, _((FYPM), (A0
M PME = Sppt (Fes )M P Mgy — Sppi—1(FaD)PMe. - (A1)

To get the trace formula concerning Fy, we take traces of (A.6) and (A.7) and eliminate
tr (MpMiy1) = tr(Mpy M), Then, we get (3.3). In order to obtain the trace formula
concerning Gy, we take traces of (A.8) and (A.10). Noticing (A.3) we have

Giyz = Sup (Fra1)tr (PMrMiyt) — Sy =1 (Fia1) G : (A.12)

~ Gt = Sy (FM (PMpMir™) + S3-1 (F) G - (A.13)
Using (A.5), we find ‘ _

tt (PMMs1) = Fir1 Gy — tr (PMpMiy) . T (ALY

Then, (A.12){A.14) follow (3.4). To show the trace formula concerning Hy, we take traces
of {(A.9) and (A.11) and eliminate tr (P M M} = tr (M PMz). Then, (3.5) is shown.
Moreover, using (A.3)—(A.5), we have

I =t (M MM MY = {tr (Mo MY — te (Mot MEMG 1)

= {tr (M1 M)} — tr Myy - tr (MEM, ) + te (M2) 7

= {tr (My1 M)y — tr My - {te My - v (M) — tr M1} + {tr 8, > — 2

= {r (M MY+ (e MY+ e My P — e (M M) -t My - te My — 2
’ (A.135)

and
(D' =t (PMe MM M)

= tr (P My—1 M) - tt (M1 My) — tr (P Moy MEM)1)

=t (P M1 My) - tt (M M) — &£ (PMy_1) - tr (M M) — &0 (P M7)

= tr (P My My) - tr (M My) o

—tr (PMi—) - (e My w (M M) —te My} — te (P M) - tr My,
=t (P M1 M) - tr (M1 M) — tr (P M) - te My + tr (PMy—y) - te My

e (Mo M) -t My - 8 (P M) . (A.16)
In addition, from (A.6) and (A.8),

Fror = Sp (Pt (Me—a My) — Sne 1 (Fi) Fr—g (A17)
and ‘ 7

Grpr = Su (Fie)te (P M1 Mi) — Spe=1 (Ft) G- (A.18)

are obtained. Eliminating tr (M;_1 M) and tr {P My M;) from (A.15)—(A.18), we obtain
(3.11) and (3.12).
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Appendix B
Self-similar polynomials up to the sixth Fibonacci order are shown:

Fxy=x
Pa(x) =rx* — (r + 1/1)
Fy(x) =rx*—(@r+1/rx
Filx) =3 = B3r2 4+ 23+ 2r2 + 2+ 1/r)x
Fs(x) =r3x® = 53 +3rx8 + (83 +or +3/r)xt
— @3+ T A e+ 1P+ 1)
Fs(x) = r3x’3 — (87° + 5r%)x" + (257 + 30r° + 10r)x°
— (3877 4- 66r° 4427 4 10/r)x” + (2875 4 64r° 4 59r + 26/r +5/r°)x°
— (8r° 4+ 25, +32r +19/r +6/7° + 1/r)x® + (2r + 6r +4/r +1/r)x
Gi(x) = @r — )x
Galx)=rxt4r—1/r
Ga(x) = 2r —r)x — @2r* — 1/r)x
Ga(x) =r*x° — F* + 25> + x/r”
Gs(x) = (2r° — r})x® — @r° +r% +3r)x% 4 (10r° 4 67° — 3r — 3r%)x*
—@r+4r —r—2fr = 1P+ (r = 1/r)
Ge(x) =rx® — (6r° + 5r3x'T + (137° 4+ 223 + 107)x°
— (127° +327° 4307 + 10/7)x7 + (4r° + 167° + 277 + 18/r +5/r)x°
(=8 —9r —4/r — 1/ — @ = 2/r — 1/
Hix)=x
Hyx)=Qri=rxt—r+1/r
Hy(x) =rx* —x/r
Hy(x) = Qr* =’ = (@rt + 2 = 2)x° + (2r* = 1/rx
Hs(x) = r*x® — 3r° +3rx% + 27 + 5r + 3/r)x*
—+2/r+ 1 —r 4 1yr
Hg(x) = (2r7 — ri)x®® — (1407 4+ 27% — 573! + (3877 4+ 27r% — 10#° — 10r)x°
— (50r7 4 60r° + 6r® — 22r — 10/r)x’
+(32r7 +527° + 223 — 15r — 16/r =57 +1/75)%°
—~ BT+ 16r° +157% —dr —9/r —4/rHx* + @ =2/r ~ 1/r¥x.
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