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Abstract Dynamical system in SL(2, R) or SL(2, C) naturally appear in the “fer matrix 
method for quasipiodic chains characterized by arbihary irrational numbers. We show new sub- 
dynamical systems and inmiants that are related to full diagonsl and off-diagonal components of 
the transfer matrices: they am malogous to formulae of Chebyshev polynomials of the first and 
second kinds. Applying Ulem to an electronic problem on the Fibonacci chai& we obtain sets of 
self-similar polynomials. quaiperiodic erremion of rhe Chebyshev polynom’als of the first and 
second kinds with self-similar properties. Two scaling factors of the self-similarities coincide with 
ones obtained by the perhubative decimation renormalization group method. 

1. Introduction 

A dynamical system in SL(2, R) or SL(2, C) defined by 

_. Mk+l = Mk-lMk (1.1) 

called ‘the Fibonacci sequence in a Lie group’ appears in the transfer matrix study of the 
quasiperiodic Fibonacci chain model [l, 21. A key feature of (1.1) is the existence of a sub- 
dynamical system and an invariant for Fk =.trMk, 

Fk+z = Fk+I Fk - Fk-1 . . (1.2) 

and 

I = F&, + F;+ Fl-1 - Fk+iFkFn-i - 2 .  (1.3) 

This sub-dynamical system is called the ‘trace map’, which is enough for spectrum study 
of physical problems (electronic, magnetic, phonon) and makes clear a singular, continuous- 
spectrum Cantor set with Lebesgue measure zero [I, 3-51, It is known that eigenfunctions are 
critical according to the singular continuous spectrum [6] .  

In this paper, we first clarify why the above invariants and others of the same type can exist. 
Second, we present new complementary sub-dynamical systems and new invariants of (1.1) 
associated not only with traces, but also with full diagonal and off-diagonal components of the 
matrices [7], which-directly relate to how the components of the matrices grow, namely the 
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behaviour of critical wavefunctions on electronic problems [PI. Moreover, third, we construct 
new sets of ‘self-similar polynomials’ [9] using the new sub-dynamical systems. 

To obtain a deeper understanding of the trace map, Dotera has developed the theory of 
‘self-similar polynomials’ through the observation that a transfer-type tight-binding model on 
the Fibonacci chain plays a key role for the dynamics. As a result, an important self-similar 
behaviour of the polynomials has been found. It has been argued that the polynomials are 
powerful tools to elucidate the structure of the energy spectrum of any types of models on the 
chain [lo]. 

In the theory, Fk’s are polynomials of x = trM1 and are considered as ‘quasiperiodic 
extensions’ of the Chebysbev polynomials of thefirst kind possessing self-similar behaviour 
with two scaling factors. In this paper we present new sets of self-similar polynomials Gk’s 
and HX’S for our new sub-dynamical systems as quasiperiodic extensions of the Chebyshev 
polynomials of the second kind. 

These self-similar polynomials have one parameter r representing the strength of 
quasiperiodicity. Properties of these self-similar polynomials are the following. (i) The 
order of these polynomials are Fibonacci numbers. (ii) When r = 1 (the periodic case), 
they coincide with the Chebyshev polynomials of the first and second kinds. (iii) When 
lr I << 1 (a strong quasiperiodic region), they exhibit self-similarities with two scaling factors; 
‘seed polynomials’ (k = 1.2.3) appear self-similarly. (iv) They have invariants which are 
independent of x .  (v) The seed polynomials can be generated from their approximate forms. 

In terms of these self-similar polynomials, we uncover a remarkable hidden self-similar 
characteristic ofthedynamicalsystem(l.l), since the two scalingfactors in theself-similarities 
are nothing but those obtained by a decimation RG method 11 I], which has been considered as 
a different approach to the trace-map method. 

The paper is organized as follows. In section 2, we begin to study generic quasiperiodic 
chains constructed by the projection method [12] associated with arbifnry irrational numbers. 
(The Fibonacci chain corresponds to a typical quadratic irrational called the golden mean.) 
It is easy to see the relation between self-similarity of the structure of chains and quadratic 
irrationality. 

In section 3, we introduce the transfer matrix method forthe chains which provides generic 
dynamical systems [13], i.e. generalization of (1.1). We investigate full components of the 
matrices and obtain new sub-dynamical systems governed by the orbit of the trace map and 
new invariants. The new maps and invariants are described in terms of analogous formulae 
of the Chebyshev polynomials. Using the knowledge of section 2, we demonstrate that the 
invariants of maps exist for quasiperiodic chains with any arbitrary irrationals because of a 
theorem of the ‘free group of rank 2’. 

In section 4, we restrict our attention to the dynamical system for the Fibonacci chain 
and construct sets of self-similar polynomials. Maps, invariants and relations are explicitly 
computedindetail. Theconclusion isgiven in section 5. Inappendix A, anoutlineofderivation 
of the new maps and invariants is given, and in appendix B, the self-similar polynomials up to 
the sixth Fibonacci generation are shown. 

2. Quasiperiodic chains associated with arbitrary irrationals 

We can obtain a quasiperiodic lattice by projecting lattice points contained in a subset of 
a higher-dimensional space into a lower-dimensional subspace. This method is called the 
projection method and the subset is called a ‘window’ [12]. Using a projection method with 
the‘window’((xl,xz) E iw21 axl  c x2 6 axl+a+l],wherea > Oisanirrationalnumber, 
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and regarding the long (short) tile as A and the short (long) one as B when e < (>)I, we 
define a quasiperiodic chain (sequence) R(a) consisting of two elements A and B .  Let qk/pk 
be a rational approximant of a given by 

and R ( ~ ) I ,  denotes the first sk elements of ~ ( a )  withsk = p k  + qk [15,16].  
It also holds that generators of the group of automorphism of 7 2  

u 1 : A - B  and B H A  

uz: A H B A  and B H B  

~ 3 ~ :  A H  A and B H B-I 

induce actions by generators of GL(2,Z) 

(2.9) 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

(2.14) 
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respectively, with some natural extension of the definition of R(Lc). These generators generate 
generic 'hyperidation transformations, generalizations of those obtained in [17]. 

Let us mention the relation between quadratic irrationality of a and self-similarity of R(a). 
Hereafter we assume 0 < IY < 1 (no = 0) by virtue of the symmetry (2.12). Since a quadratic 
irrational is a fixed point of a certain GL(2, Z) transformation, the corresponding chain is 
invariant under a certain hyperhaation transformation, meaning that the chain is self-similar. 
If we define a free substitution (an automorphism) [14] 

@,, =cr~uz" @n : A H  A"B and B H A (2.15) 

T Suzuki and T Dotera 

we get 

RA = @ m  o h 2  o . . . o @ n t - , ( A )  

= @m 0 @a% 0 ' ' ' 0 @tu-, 0 @m ( B )  (2.16) 

&+I = @w 0 @m 0 ' . ' 0 4nk.t 0 & ( A )  

whichmeans that R k  and Rt+l are obtained by transforming B and A by thesameautomorphism 
(notice the order of operating). Thus it is clear that, if LC has a periodic continued fraction 
expansion, R(a) can be obtained from A (or B )  by an infinite succession of a certain free 
substitution (substitution rule) and have self-similarity. (The continued fraction expansion of 
an irrational number is periodic if and only if it is quadratic irrational.) In particular, if nt = n, 
i.e. independent of k, the chains are the Fibonacci (golden) and the precious (silver, etc) mean 
chains 1181. They are obtained by an infinite succession of 4" and are the 'fixed points' of the 
substitution &, i.e. have self-similar properties. 

3. The dynamical systems and their sub-dynamical systems 

Many physical problems on the chain R ( a )  can be reduced to the transfer matrix method. 
From (2.5), the matrix Mk satisfies 

&+I = Mk-iM,"' (3.1) 

which defines a dynamical system in SL(2, R) or SL(2, C). Traces of the matrices were well 
studied by several authors [1-5,13,18,19]. However, our purpose here is to investigate other 
components of the matrices, which provide new sub-dynamical systems and invariants of (3.1). 

Let us define the following quantities using an arbitrary P E M ( 2 ,  C) with tr P = 0: 

Ft =trMk  Gk =tr (PMk)  =tr(PMx-aMlL<') H k  = t r ( M k - z P M ~ ~ ~ ) .  
(3.2) 

Inordertoseetherelationsof Fk, Gk and& wealsowritedowntheequationsof Fk throughout 
the paper. Then, we obtain formulae. 

F k + ~ S n r ( F k )  + Fk-~Sn,+,(Fk+l) = F~+IF~S",+,(F~+I)S",(FX) 
- F~+I&+, (F~+I)S~~-I(F~) - F ~ S ~ ~ ( F W ) S ~ ~ + , - I ( F ~ + I )  

+ Gt+l Sn,+, (Ft+l)Snt-l (Fx)  - G~Snr(FdSnr+j-l (F.+I) 

- Gx+lSfi,+, (Fx+I)Snx-I(Fd - G~S,,(F~)S"~+,-I(F~+I) 

(3.3) 

(3.4) 

(3.5) 

Gn+zSn, ( F d  - Gt-I Snt+, (F~+I) = Fk+lGtSm+, (Fk+l)&i(&) 

&+zSnk(Fd + Gk-~Sni+, (Fx+I) = G*+I FkSm+,(Fk+~)sn~(Fk) 
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where S,,(x) is the manic Chebyshev polynomial of the second kind defined by 

S&) = 0 

6105 

Sl(X) = 1 S"+l(X) = X S , ( X )  - S,-,(X) 
sinn0 

or S,,(Zcos0) = 7 
sin 0 (3.6) 

(An outline of derivation of these formulae is given in appendix A.) These formulae provide 
sub-dynamical systems and invariants of (3.1). 

To see this explicitly, we set 

Then we obtain that G f ) ,  Gib), and G f )  satisfy these formulae (with obvious notations) and 
h f k  can be described in the form 

(3.14) 

which implies that our sub-dynamical systems completely determine the original system. 
Moreover, we know how the components of the matrix grow from (3.4) [SI .  Since the sub- 
dynamical system (3.4) is linear about Gk. the orbits of matrices are governed by the orbit 



6106 

of their traces. It is clear that we can obtain four independent invariants of (3.1) and that in 
generic cases P can be expanded by P('), Pcb) and P(". 

The very existence of the invariants is due to the relations (2.16) and (3.8). The dynamical 
system (3.1) defines a representation of F2 in SL(2, R) or SL(2, C), corresponding A to MI 
and B to MO, in general Rk to Mk. As mentioned in section 2, Rk and &+I are obtained 
from A and B by the same automorphism, and there exists a theorem of group theory that the 
commutator of generators Fz is transformed as 

T Suzuki and T Dotera 

ABA-IB-'  H X(ABA-'B-')"X-'  (3.15) 

( X  is an element of F2) by an automorphism [ 141. Therefore the commutator of Mk and &+I 

must satisfy the same relation as (3.15), which is (3.8). It is plausible that we cannot obtain 
such invariants as I or I for quasiperiodic chain obtained by non-free substitution rules (not 
automorphisms) [20,21]. No analogue of this theorem exists for any 3, (m 2 3), hence it is 
also plausible that we cannot obtain such invariants form tiling chains (m 2 3). 

Formulae (3.3)-(3.12) can be regarded as quasiperiodic analogues of those of the 
Chebyshev polynomials of the first and the second kinds. In fact, if MI = MO, i.e. Mk = MF 
(the chain is periodic), then we find Fk's an Gk's are the Chebyshev polynomials of x = tr MI, 
and I = ~ 2 ,  J = 0. Since the maps defined by the Chebyshev polynomials have ergodic 
properties (bounded in a region), we can understand that a periodic system has an absolutely 
continuous spectrum in the view of the dynamical system [22]. In contrast, quasiperiodic 
systems have singular continuous spectra in general. a scenario which has been recognized in 
terms of escaping in the trace map (3.3) and the invariant (3.1 1) [3,13,19]. 

Beforeclosing this section, wereturn totheFibonaccichain, nk = 1 (a becomes theinverse 
of the golden mean (0.618.. .), a typical quadratic irrational number). In this case, the chain 
is self-similar and obtained by a substitution rule. The dynamical system (3.1) becomes (1. l), 
which is thought to be a renormalization group equation by virtue of the self-similarity of the 
chain [1,2,23]. The sub-dynamical systems and the invariants in this case become 

4. Sets of self-similar polynomials 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

In the rest of the paper, we concentrate on the dynamical system (1.1) for the Fibonacci chain 
and present new sets of self-similar polynomials Gc(x)'s and Hk(x)'s corresponding to the 
Chebyshev polynomials of the second kind concerning (3.17) and (3.18). 
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In the transfer-type tight-binding model on the Fibonacci chain 191, we have 

where r = t A / t B  is the ratio of the transfer energies and we set x = E / t A  ( E  is the energy 
value). 

In order to construct self-similar polynomials G.&)’s and Hk(x)’s,  we must make a 
suitable choice of P. If we make a correct choice of 

(4.2) 

then we have seed polynomials (k = 1,2,3) 

F , ( x )  = x (4.3) 

Gl(x )  = (2r2-l)x Gz(x)  = r x 2 + r - l / r  G ~ ( x )  = (2r3-r)x3+(-2r3+l/r)x 

(4.4) 

H ~ ( x )  = x (4.5) 

F ~ ( x )  = rx2 - r - I/r  F ~ ( x )  = rx3 - (Zr + l / r ) x  

= (2r3 - r)x2 + l / r  - r H ~ ( x )  = rx3 - x / r  . 

The following properties of the polynomials Gr(x)’s and H k ( X ) ’ s  are obtained. 

polynomials of the second kind, i.e. 
(a) When r = 1 (the periodic case), Gt(x)’s and H~(X) ’S  coincide with the Chebyshev 

f i ( x )  cfi(x) . Gk(X) = ffk(x) =xsh(xx) (4.6) 

(b) When lrl << 1 (a strongquasiperiodic region), GL(x)’s and Hk(x)’s exhibit self-similar 

(c) J is independent of x ,  i.e. independent of the energy value; we obtain 

. where 

behaviour, as the F~(x)’s. 

is the Fibonacci number ( f o  = f t  = 1, f k + l  = f k  -t f k - 1 ) .  

(4.7) I = r 2 +  l / r 2  J = r 2 -  I l r  2 . 
(d) Seed polynomials can be generated from their approximate forms. 
Many choices of P lead to (a)-(cj but not,(d), as is plausible from our studies. 
Now we will compute (b) and (d) (see appendix B). We find self-similar properties in two 

(A) 3-cycles, for 1x1 < lrl << i; self-similarities with ascaling factor I / ?  exist: 
ways: 3-cycles and 2-cycles. 

F4(x)  Fl(Xlr2) Fs(x)  = -F2(x/r2) F&) Y - F 3 ( x / t 2 )  

H ~ ( x )  Y -H1(x/r2) H~(x) N Hz(x/r2).  H6(x) - ,H3(xlrZ) .  

Moreover, if we employ the approximate seed functions 

G ~ ( x )  =,-G,(x/r’)  G&) zx Gz(x/r’) G 6 ( X )  G 3 ( X / r 2 )  (4.8) 

(4.9) 
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which satisfy f = r2 + l/r2 and 7 = r2 - l/r2, then from (3.16)-(3.18) we obtain the exact 
relations 

.%x) = F1(x/r2)  = -Fz(x/r2) & ( X )  = - ~ 3 ( x / r ’ )  

&(x)  = - G l ( x / r 2 )  G;5(x) = G2(x/r2) G;6(x) = ~3(X/r’) (4.10) 

&(XI  = -H1(x/r2) & ( x )  = H2(x/r2) & ( X )  = ~3(x/r’). 

(B) 2-cycles, for 1x1 < lrl << 1; other self-similarities with a scaling factor 2 / r  exist: 

F3 (x f R) N FI (2x/r) 

G3(x i R )  Y Gl(2xlr) 

H3’(x f R) N H,(2x/r) 

F& i ~ R )  Y fF2(2x/r) 

G& i R )  N iG2(2x/r) 

H4(x f R) N &Hz(2x/r) 

F5(x f R) 2: iF3(2x/r) 

G5(x f R) N fG3(2x/r) 

H5(x f R) N &H3(2x/r) 
(4.11) 

where R = r + l / r .  Furthermore, if we use the approximate seed functions in the vicinity of 
f R  

(4.12) 

= F l ( b / r )  FA,@) = fFz(2x/r) &x) = &F3(2x/r)  

c 3 ( x )  =~G1(2x/r)  G ; ~ ( x )  = iGz(2x/r) ~ 6 5 ( x )  = &G3(2x/r) (4.13) 

&(x) = H1(2x/r) & ( x )  = *HZ(k/r) &(x)  = i H 3 ( 2 x / r ) .  

These mean that not only (b) but also (d) is fulfilled. 
These self-similarities for Fk(x)’s and C&)’s are illustrated in figure 1. Seed functions 

are shown in (a) and (d). Global structures appear again for three cycles in (b) and (e), and 
for 2-cycles in (c) and (e). The energy value x is scaled by two scale factors, which coincide 
with the ones obtained by the perturbative decimation renormalization group method [ll]. 
Although new Gx(x)’s and Hx(x)’s are not directly related to the decimation transformation, it 
is important that the scaling factors are recovered due to the specific choice of P (the meaning 
of the choice of P is still to be determined, though). 

The two-way self-similarity is well described by the schema of the ‘Fibonacci tree’ [9,10]. 
The Fibonacci chain is obviously self-similar in the sense of the inflation rule; however, the 
the property is more subtle, a fusion of two-way self-similarity. According to (b) or (d), 
self-similar polynomials are akin to fixed points of the maps (3.16)-(3.18), in other words, 
‘fixed-point functions’ under scale transformations in the case of the sirong quasiperiodicity. 
Weak quasiperiodic case where r 2: 1 has been investigated in [IO]. 
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Figure 1. Self-similar polynomials with I = $. Global swctwes appear again in self-similar 
manners. (a) Seed functions, Fi(x) ,  Fz(x), F ~ ( x ) .  (b) Magnification lOOx in the x direction 
of Fd(x).  -Fs(x) ,  -Fa(x). (c) Magnification 20% in the x direction of F ~ ( x  + R), Fd(x + R ) ,  
&(x + R ) .  (d)Seedfunaions,  Gi (x) .  Gz(x), G ~ ( x ) .  (e)MagnificatiM IOOxhthex direction 
of -Gd(x), G&), Gs(x). V, Magnification 20x in the x direction of G3(x 4- R ) ,  Gn(x + R).  
Gs(x + R ) .  
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5. Conclusion 

In this paper, we investigated dynamical systems associated with quasiperiodic chains and 
found new sub-dynamical systems and invariants. A key feature we pointed out was that 
they were analogous to formulae of the Chebyshev polynomials of the first and second kinds. 
Our new dynamical systems directly represent how the components of the matrices grow. 
Moreover, we presented sets of self-similar polynomials associated with the Fibonacci chain 
andillustrated twokinds ofself-similarity forthechain. By means ofaparameterr representing 
the strength of quasiperiodicity, these polynomials were quite a natural quasiperiodic extension 
of the Chebyshev polynomials of the first and the second kinds. 

There exists a difference between the sets of the polynomials regarding inner product 
properties. F&)'s are not mutually orthogonal with respect to their zeros (the Chebyshev 
polynomials of the first kind are orthogonal); however, their inner products can be exactly 
represented by r and the Fibonacci and modified Fibonacci numbers as explored by Dotera [9]. 
Gx(x)'s and Hk(x)'s were not studied for th is  property, since the Chebyshev polynomials of 
the second kind do not have the property. 

Quasiperiodic chains are models of quasicrystals [Za] and have many attractive aspects 
from not only physical but also mathematical points of view. The issueof the dynamical system 
through the transfer matrix method for the quasiperiodic chain is one of them. The transfer 
matrix method gives a simple mathematical form, whereas the decimation renormalization 
group method [ I l ,  251 gives a simple physical picture; both theories give consistent results 
without a clear relation between them. Apparently the self-similar polynomials provide a 
substantial understanding of the relation and are an analytic realization of the self-similarity 
of the Fibonacci chain. 

T Suzuki and T Dotera 
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Appendix A 

An outline of derivation of formulae (3.3t(3.5) and (3.1 I), (3.12) is given. 

satisfying tr P = 0. Then, we have the following: 

M" = S,(x)M - S,- l (x)E and M-" = -S,(x)M + S.+t(x)E (-4.1) 

M +  M-I = x E  and N + N-l = yE (A.2) 

where E is the unit matrix. Using (A.2), we have 

Let M, N E SL(2, W) or SL(2, C), x = t r M ,  X = t r ( P M ) ,  y = tr N with P E M ( 2 ,  C) 

t r M = t r ( M - ' )  and t r ( P M ) = - t r ( P M - ' )  (A.3) 
tr (M N )  = x y  - tr (M N - I )  = xy  - tr (NM-'  ) (A.4) 

tr ( P M N )  = i y  - tr ( P M N - I )  = i y  + tr ( P N M - ' )  . ( A 3  



are obtained. Eliminating t r ( M k - l M k )  and tr(PMk-1Mk) from (A.15HA.18), we obtain 
(3.11) and (3.12). 
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Appendix B 

Self-similar polynomials up to the sixth Fibonacci order are shown: 

F, ( x )  = x 

F ~ ( x )  = rx2 - (r + 1/r )  

F ~ ( x )  = rx3 - (2r + l / r ) x  

F ~ ( x )  = r2x5 - (3r2 + 2)x3 + (2r2 +Z + 1/r2)x 

F ~ ( x )  = r3x' - ( 5 2  + 3r)x6 + (8r3 + 9r + 3/r)x4 

-(4r3+7r + 4 / r + 1 / r 3 ) x 2 + ( r + ~ / r )  

F&) = r5xI3 - (8r5 + 5r3)x" + ( Z r 5  + 30r3 + 10r)x9 

- (38r5 + 66r3 +42r + 10/r)x7 + (28r5 + 641 
- (8r5 + 25r3 + 32r + 19/r +6/r3 + l /r5)x3 + (2r3 + 6r +4 / r  + l / r3 )x  

t 59r + 26/r + 51. ,x5 

G I ( x )  = (2r2 - 1)x 

Gz(x )  = rx2 + r - l / r  

G ~ ( x )  = (2r3 - r)x3 - (2r3 - l / r ) x  

G&) = r2x5 - (r2 + 2)x3 + x / r 2  

G ~ ( . x )  = (zr5 - r3)x8 - (8r5 + r3 + 3r)x6 + (lor5 + 6r3 - 3r - 3rZ)x4 

- (4r5 + 4r3 - r - 2/r  - 1/r3)xZ + (r - l / r )  

G ~ ( x )  = r5xL3 - (6r5 + 5r3)x1' + (13r5 + 22r3 + 1 0 ~ ) ~ ~  

- (lZr5+ 32r3 + 30r + 10/r)x7 + (4r5 + 16r3 + 27r + 18/r + 5/r3)x5 

+ (r3 - Sr - 9/r  - 4/r3 - l / r5)x3  - (a3 - 2/r - l / r3 )x  

H I  ( x )  = x 

Hz(x) = (Zr' - r)xZ - r + l / r  

H ~ ( x )  = rx3 - x / r  

H4(x)  = (2r4 - rZ)x5 - (4r4 + r2 - 2)x3 + (a4 - l / r2)x  

H ~ ( x )  = r3x' - (3r3 + 3r)x6 + (2r3 + 5r + 3/r)x4 

- (r + 2 / r  + l / r3)x2  - r + I / r  

Hs(x) = (2r7 - r5)xI3 - (14r' + ZrS - 5r3)x" + (38r7 + 27r5 - lor3 - 10r)x9 

- (50r7 + 60r5 + 6r3 - 22r - 10/r)x7 

+ (32r7 + 52r5 + ZZr3 - 15r - 16/r - 5/r3 + 1/r5)xS 

- (Sr7 + 16r5 + 15r3 -4r - 9/r - 4/r3)x3 + (4r3 - 2/r  - l / r 3 ) x .  
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